"Invariants" sounds fancy but it really just means "Look for things that don’t change."

1. Take any number. Add 10. Add 10 again. Add 10 again. Keep on adding. What stays the same? What changes in a steady direction?

2. What if you add 2 instead of 10? How about 9? What about other numbers?

3. What if you multiply by 10? Multiply by 9? Other numbers?

4. A mad veterinarian has invented an animal transmogrifying machine. If you put in two cats or two dogs, then one dog comes out of the machine. If you put in one cat and one dog, then one cat comes out. The veterinarian’s goal is to end up with only one cat and no other animals. For example, you might start with three cats and a dog.

 What happens in this game? Can the veterinarian win?

 What if the veterinarian starts with a different collection of animals?

5. The veterinarian’s old machine breaks. Now the veterinarian has dogs, cats, and mice. The new transmogrifying machine can take in any two different animals and then out comes the third animal.

 (a) Can you win (by ending up with just one cat) if you start with three cats and a dog?

 (b) What about other starting situations, like four of each animal for example?

 (c) What about if you can reverse the rule when you wish, putting in one animal and having one of each of the other two animals come out?

6. What if the machine is changed so that when you put in two different animals, you then get two of the third animal? The goal is to end up with only one kind of animal. What starting situations enable you to eventually win?

7. Now let’s take a look at a machine with three functions. One converts a cat into two dogs and a mouse (or vice-versa): 1C ↔ 2D 1M. A second machine does 1D ↔ 1C 1M, and a third machine does 1M ↔ 1C 3D. The general puzzle is to start with just one animal and replicate it: what’s the fewest cats (more than one) that you can turn one cat into (with no mice or dogs left

1 This handout is copied with permission from Joshua Zucker
around)? Or, even more generally, starting with one cat can you describe all
the combinations of animals you can end up with?

8. Here’s a two-player game: Pluses and Minuses: Player 1 writes a sequence of
ten positive integers. Then player 2 writes a + or – sign in each of the nine
spaces between the integers. In the end, if the final numeric result is odd,
player 1 wins, and if even, player 2 wins.

(a) Who should win this game, and how?

(b) What if player 1 is given a bag with a certain collection of numbers, each of
which can be used only once? For example, if they have a bag containing
the numbers 1 through 12? 1 through 11? 1 through 10?

(c) What if player 2 can use exactly one multiplication sign, and eight + or
– signs, in the nine spaces?

(d) What if player 2 gets exactly two multiplication signs (and 7 + or – signs)?

9. Another one-player game: Box points: Start with a stack of n boxes. At each
move, as long as any stacks have more than one box, split one stack into two
parts, say x boxes into y and z, and score yz points.

(a) How should you split them in order to maximize your score?

(b) What is the maximum score for each n?

10. Coin-flipping: Begin with some number of coins, say four for example, and
set them on the table in a line, with a given starting sequence like HHTH for
example. At each move, you may flip any two adjacent coins. You win if the
final arrangement of the coins is all heads.

11. Coin-splitting: Begin with an infinite strip of squares, and a penny on one spot.
At each move, you may either split the penny (remove it and put a penny on
each adjacent spot) or merge two pennies (remove two pennies with exactly
one space between them and put one on the space between; in other words,
undoing the splitting operation). You may have any number of pennies on a
given spot (but each move only splits one penny or merges two pennies into
one).

(a) Starting with one penny, can you split and merge to end up with just one
penny on the board in a different spot?

(b) What different spots are possible?