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1 Introduction

Linear algebra pops up everywhere in math, sometimes in an obvious way, sometimes in a
sneaky way. One example is calculus! Linear algebra is the study of lines, planes, and higher
dimensional analogues, whereas differential calculus is (more-or-less) the study of tangent
lines to curves. Many topics in combinatorics can be rephrased using matrices, groups
(which were the topic of an earlier math circle) can be studied using linear algebra, and
the list continues. On the applied side, Google’s page-rank algorithm is actually a problem
involving matrices and, as such, is an application of linear algebra.

This worksheet will give you a taste of what linear algebra is, and how we can get some
interesting results (some may be familiar) in ways you might not expect. For example, we can
find a closed form expression for Fibonacci numbers using a certain matrix and its powers.
We’ll also play around with some geometry, look at transformations on the plane, specialize
to rotations, and finally look at the connection between rotations and complex numbers.

2 Basics on Matrices and Matrix Operations

In this section we’ll introduce the concept of a matrix, as well as how to work with them.
This section is just a collection of tools and won’t seem very motivated. Don’t worry though,
we’ll see plenty of cool ways that matrices are utilized in the later sections.

2.1 What is a matrix?

The most basic interpretation of a matrix is a rectangular array of numbers. For example,
these are all matrices:

(
3 7

0.5 2

)
,

(
2 π 2π√
2 1

π
300

)
,


0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19

 ,
(
1.12345

)
.
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There isn’t any extra structure we put on these arrays, they are just organized collections
of numbers. In what follows, we’ll usually refer to the numbers of the array as elements of
the matrix. The first matrix above is a 2× 2 matrix, since it has two rows and two columns.
The second is a 2× 3 matrix, since it has two rows and three columns.

Exercise 2.1 What kinds of matrices are the last two above? In other words, they are m×n
matrices where m and n are integers; what are the integers?

In many situations, we think of 1×1 matrices as a real number, since they are more-or-less
the same kind of object.

2.2 How do we add matrices?

Now we’ll put a little more structure on these objects, starting with addition. For two
matrices of the same type (say, two 2 × 2 matrices, or two 3 × 4 matrices, etc.), we define
addition element-wise. These examples should make this clear:(

2 5 8
1 π 0

)
+

(
1 5 −2
0 3π 1

)
=

(
2 + 1 5 + 5 8 + (−2)
1 + 0 π + 3π 0 + 1

)
=

(
3 10 6
1 4π 1

)
,(

3 4
2 −7

)
+

(
1 2
0 18

)
=

(
3 + 1 4 + 2
2 + 0 −7 + 18

)
=

(
4 6
2 11

)
.

This is why we need the matrices to be of the same type, since otherwise one of the
elements might not have a corresponding element to be added to.

Exercise 2.2 What matrix do you get from adding

(
2 3
3 2

)
+

(
1 1
1 0

)
?

Exercise 2.3 What is the additive inverse of the matrix

(
7 0 2
1 −1 1

)
? In other words, find

the matrix

(
a b c
d e f

)
such that

(
7 0 2
1 −1 1

)
+

(
a b c
d e f

)
=

(
0 0 0
0 0 0

)
.

Exercise 2.4 Using the last exercise (or otherwise), find the additive inverse of the matrix(
a b
c d

)
, where a, b, c, d can be any real number.

We call the matrix filled with 0s the zero matrix (who would’ve thought), and write it

as just 0. For example, the 2× 2 zero matrix is 0 =

(
0 0
0 0

)
.

Another important matrix (especially in the upcoming sections) is the identity matrix,
which we’ll write as I. This is the m×m matrix with 1s along the diagonal and 0s elsewhere.

In the 2× 2 case, it looks like I =

(
1 0
0 1

)
.
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2.3 How do we multiply matrices?

Now we’ll introduce an even fancier structure to our collection of matrices, multiplication.
If A is an m× n matrix and B is an n× o matrix, then we define their product in a slightly
strange way, which I’ll show with some examples. It’s important to note that the number of
columns of A has to be the same as the number of rows of B!

Explicitly for 2× 2 matrices (which we’ll mainly be using):(
1 2
3 2

)
·
(

8 0
−1 4

)
=

(
1 · 8 + 2 · (−1) 1 · 0 + 2 · 4
3 · 8 + 2 · (−1) 3 · 0 + 2 · 4

)
=

(
6 8
22 8

)
,

and so in general

(
a1 a2
a3 a4

)
·
(
b1 b2
b3 b4

)
=

(
a1 · b1 + a2 · b3 a1 · b2 + a2 · b4
a3 · b1 + a4 · b3 a3 · b2 + a4 · b4

)
.

For other types of matrices multiplication takes the same kind of form, where we match
elements in the rows of the first matrix with elements in the column of the second matrix,
then add them up. Another type of matrix multiplication that we’ll make extensive use of
is a 2× 2 matrix by a 2× 1 matrix:(

1 2
3 2

)
·
(
−2
4

)
=

(
1 · (−2) + 2 · 4
3 · (−2) + 2 · 4

)
=

(
6
2

)
,

and so in general

(
a1 a2
a3 a4

)
·
(
b1
b2

)
=

(
a1 · b1 + a2 · b2
a3 · b1 + a4 · b2

)
.

Since we don’t need to multiply other types of matrices, I won’t go into the general case,
but here’s an example of a 2 × 2 matrix multiplied with a 2 × 3 matrix (notice that the
dimensions match up in the way they should!):

(
1 2
3 2

)
·
(

8 0 1
−1 4 3

)
=

(
1 · 8 + 2 · (−1) 1 · 0 + 2 · 4 1 · 1 + 2 · 3
3 · 8 + 2 · (−1) 3 · 0 + 2 · 4 3 · 1 + 2 · 3

)
=

(
6 8 7
22 8 9

)
.

Exercise 2.5 Compute

(
3 2
1 2

)
·
(

0 2
3 0

)
. What is

(
3 2
1 2

)
·
(

0
3

)
? Notice any connections

between these two matrix products?

Exercise 2.6 Compute

(
3 2
1 2

)
· I =

(
3 2
1 2

)
·
(

1 0
0 1

)
. What do you notice?

The last exercise shows why we call I the identity matrix; it’s the multiplicative identity
for matrices (just like how 1 is the multiplicative identity for real numbers)!

Exercise 2.7 Compute

(
6 3
2 1

)
·
(

1 −2
−2 4

)
. What do you notice?

Exercise 2.8 What about

(
2 −2
−2 4

)
·
(

6 3
2 1

)
? What is the difference between matrix

multiplication and ordinary real number multiplication?
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Exercise 2.9 Given two 2×2 matrices A,B, what conditions do you need for A ·B = B ·A?

If you’re not sure, try a simpler case: what if A =

(
a1 a2
a3 a4

)
and B =

(
b1 0
0 b2

)
? Do these

commute?

In one of the last exercises you should have gotten the 0 matrix. Don’t be alarmed!
There are other places in math where multiplying two non-zero things gives zero, and matrix
multiplication is one of those places. So long as we don’t divide by zero, we won’t run into
any trouble.

Finally, we have another kind of multiplication for matrices. This time though we multi-
ply the matrix by a real number, not another matrix, and the multiplication is done element-
wise (just like addition). For example,

3 ·
(

2 −2
−2 4

)
=

(
3 · 2 3 · (−2)

3 · (−2) 3 · 4

)
=

(
6 −6
−6 12

)
.

2.4 The inverse of a 2× 2 matrix

Now that we know how to add, subtract, and multiply matrices together, let’s look into
division.

When we divide two real numbers, say x/y, what we’re really doing is looking for a
number z such that x = yz. For example, 4/2 (four divided by two) is equal to 2, because
4 = 2 · 2. A good starting point is to find the inverse of numbers, like the multiplicative
inverse of 2, and define division as the multiplication by the inverse. This is the approach
we’ll take.

To this end, we need to know what the inverse of a 2×2 matrix is: if A =

(
a b
c d

)
, where

ad− bc 6= 0, then the inverse of A is

A−1 =
1

ad− bc

(
d −b
−c a

)
.

Exercise 2.10 Check that if A =

(
a b
c d

)
, with ad− bc 6= 0, then we do indeed have

A · A−1 = I.

Thus, if we want to divide the matrix A by the matrix B, we multiply A · B−1. The
only real number we can’t divide by is 0, and this is encapsulated by the requirement that
det(A) = ad−bc 6= 0. Whenever you want to check whether something is invertible, compute
the determinant1 det(A) and see if that’s 0.

Exercise 2.11 Is I invertible? Why or why not? What about 0?

1The determinant is a funny function that may seem completely out of the blue and unmotivated. At
this stage you’re not wrong, but there are some deeper, more natural reasons as to why the determinant is
defined the way it is (and it’s an incredibly important function when working with matrices).
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Exercise 2.12 Is

(
6 3
2 1

)
invertible? Why or why not?

Look back at exercise 2.7, where the last matrix first appeared. It isn’t a coincidence
that the product there was 0, and that the matrix isn’t invertible. In fact, if we only look
at matrices that satisfy det(A) = ad− bc 6= 0, i.e. the set

GL2 = {2× 2 matrices A that satisfy det(A) 6= 0},

then with matrix multiplication we get a group! Neat! In the following sections, it turns out
to be this group structure that gives us all of the cool properties that we’ll explore.

Exercise 2.13 * Let A =

(
a1 a2
a3 a4

)
. Let A′ be the matrix we get by switching the columns

of A. Show that det(A) = − det(A′).

Exercise 2.14 * Suppose that one of the columns of A is a multiple of the other, say(
a1
a3

)
= c

(
a2
a4

)
for some constant c. Show that in this case det(A) = 0.

Exercise 2.15 * Show that, if A,B are 2 × 2 matrices, then det(A · B) = det(A) · det(B).
Is det(A ·B) = det(B · A)?

3 Fibonacci Numbers and Matrices

The Fibonacci numbers Fn are defined by the recursive relation

Fn+2 = Fn+1 + Fn, F1 = 1, F2 = 1.

In this section we’ll find a nice expression for Fn using matrices. Curiously enough, the
golden ration 1+

√
5

2
also plays a role.

In what follows, we’ll make extensive use of the matrix F =

(
1 1
1 0

)
.

Exercise 3.1 What is F 2? What about F 3? What about F n? If you’re not sure what the
pattern is, compute F 4, F 5, etc. as well.

Next, we’re going to introduce a “change of basis” matrix A =

(
φ1 1
φ2 1

)
, where φ1 = 1+

√
5

2

and φ2 = 1−
√
5

2
. Here, φ1 and φ2 are the roots of the polynomial x2 − x− 1, and φ1 is often

called the golden ratio. The next exercise shows why we might want to introduce and use
this matrix A.

Exercise 3.2 What is A ·F ·A−1? For this you need to verify that A is invertible, compute
the inverse, then compute the product. Hint: since φi is a root of x2 − x − 1, we have
φ2
i − φi − 1 = 0 for i = 1, 2.

We’ll call the matrix from the last exercise D, so that D = A · F · A−1. The matrix D
you computed should be diagonal (which is why we named it D).
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Exercise 3.3 Now compute F n, as well as Dn.

Exercise 3.4 Show that (A ·F ·A−1)n = A ·F n ·A−1. Use this to show that A ·F n ·A−1 = Dn.

Exercise 3.5 Using the last exercise, what is a closed form expression for the n-th Fibonacci
number? By closed form, I mean a non-recursive representation for the numbers Fn. Hint:
AF nA−1 = Dn is the same equality as F n = A−1DnA (why is this true?).

Exercise 3.6 What is the limit of the ratio of successive Fibonacci numbers limn→∞
Fn+1

Fn
?

Much of the math underpinning this problem utilizes objects called eigenvectors and

eigenvalues. To be precise, the eigenvalues of the matrix

(
1 1
1 0

)
are φ1 and φ2, because

there exist vectors

(
v1
v2

)
,

(
u1
u2

)
such that

(
1 1
1 0

)(
v1
v2

)
= φ1

(
v1
v2

)
and

(
1 1
1 0

)(
u1
u2

)
= φ2

(
u1
u2

)
.

Exercise 3.7 What are v1, v2, u1, u2? How do they relate to A?
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